Planetary motions: Kepler's Laws

Which best describes Earth's movement in the solar system?

A. Earth revolves around the Sun in a perfect circle.
B. The Sun revolves around the Earth.
C. Earth revolves around the Sun in an elliptical path.

Which best describes Earth's movement in the solar system?

A. Earth revolves around the Sun in a perfect circle.
B. The Sun revolves around the Earth.
C. Earth revolves around the Sun in an elliptical path.

Which shape below best represents Earth's orbit around the Sun

Which shape below best represents Earth's orbit around the Sun

Kepler's Three Laws of Planetary Orbits

- 1) All planets orbit in ellipses, with the Sun at one focus.
- Semi-major axis (a) describes half of the long axis of a planet's orbit
- $c=$ half of the separation of the ellipse's two focii.
- Eccentricity (e) describes how non-circular an orbit is:
- $0=$ perfect circle, closer to 1 means skinnier oval.
- Perihelion = closest part of an orbit to the Sun;
- Apehelion = farthest part of an orbit from the Sun;
$e=\frac{c}{a}$

$$
R_{\text {perihelion }}=a(1-e)
$$

$$
R_{\text {apohelion }}=a(1+e)
$$

Planets in our solar system have low eccentricity orbits that are hard to distinguish from perfect circles. Comets have much higher eccentricities, where the ellipsoidal nature of their orbits is easier to see.

Comets Follow Different Orbits

Comets Follow Different Orbits
The exception? Pluto!

Kepler's Three Laws of Planetary Orbits

- 1) All planets orbit in ellipses, with the Sun at one focus.
- 2) In its orbit, a planet sweeps out equal areas in equal times.
- When a planet is in the part of its orbit that is closer to the Sun, it moves more quickly.
httn://3.hn.hlogsnot.com/-IN5hFXNnsVo/IIIVznVIii I/AAAAAAAAA5c/lnOyxLNbJfk/s1600/kepler2law.JPG

Let's do an astronomy simulation
http://astro.unl.edu/interactives/kepler/KeplerSecon dLaw.htmlperiods

(a)

Kepler's $2^{\text {nd }}$ Law: Quick Poll Questions

1. Which one of the planet's orbital segments will last as long as the time it takes for the planet to sweep through the arc ' A '?
A. Can't be determined

B. Arc B
C. $\operatorname{Arc} C$
D. Arc D

Kepler's 2 ${ }^{\text {nd }}$ Law: Quick Poll Questions

1. Which one of the planet's orbital segments will last as long as the time it takes for the planet to sweep through the arc ' A '?
A. Can't be determined
B. Arc B
C. $\operatorname{Arc} C$
D. $\operatorname{Arc} D$

Kepler's Three Laws of Planetary Orbits http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html

- 1) All planets orbit in ellipses, with the Sun at one focus.
- 2) In its orbit, a planet sweeps out equal areas in equal times.
- When a planet is in the part of its orbit that is closer to the Sun, it moves more quickly.
- 3) Planets' orbital periods increase with the semi-major axis of the orbit.
- Planets that are farther from the Sun have larger orbital periods.
- 3rd law.....
- http://astro.unl.edu/classaction/animations/renaissance/keplers third.html

Orbital Properties of Solar System Bodies

- Table courtesy AstronomyNotes.com (http://www.astronomynotes.com/tables/tablesb.htm)

Planets: Orbital Properties

Planet	distance	revolution	eccentricity	inclination
	(A.U.)			(deg)
Mercury	0.387	87.969 d	0.2056	7.005
Venus	0.723	224.701 d	0.0068	3.3947
Earth	1.000	365.256 d	0.0167	0.0000
Mars	1.524	686.98 d	0.0934	1.851
Jupiter	5.203	11.862 y	0.0484	1.305
Saturn	9.537	29.457 y	0.0542	2.484
Uranus	19.191	84.011 y	0.0472	0.770
Neptune	30.069	164.79 y	0.0086	1.769
Pluto	39.482	247.68 y	0.2488	17.142

- Note use of the Astronomical Unit: $1.5 \times 10^{8} \mathrm{~km}$

Orbital Properties of Solar System Bodies

- Figure courtesy TeachAstronomy.com (http://www.teachastronomy.com/astropedia/article/Keplers-laws)

- Note units: Periods in years, semi-major axis in AUs.

Orbital Properties of Solar System Bodies

- Figure courtesy Prof. Kenneth Lang @ Tufts University
(http://ase.tufts.edu/cosmos/view picture.asp?id=929)

$P^{2} \propto a^{3}$

For both planets \& Jupiter's moons following the same law, just with different constants involved!

- Note units (Periods in years, semi-major axis in AUs) and different scales for planets \& Jupiter's moons.

Kepler's Three Laws of Planetary Orbits

- 1) All planets orbit in ellipses, with the Sun at one focus.
- 2) In its orbit, a planet sweeps out equal areas in equal times.
- When a planet is in the part of its orbit that is closer to the Sun, it moves more quickly.
- 3) Planets' orbital periods increase with the semi-major axis of the orbit.
- Planets that are farther from the Sun have larger orbital periods.

FOR FRIDAY:

- I will post the next group activity this evening
- Please read through it before class on Friday
- I will provide you with handouts for your groups in class
- The next homework is posted and is due by 11PM Friday night; Late assignments will not be accepted

ROOM MAPS: Please sit in the seats assigned to your group.

Group Assignments

Student	G'rp	Student	Grp	Student	G- ${ }^{-}$	Student	rp
Garrett Knoll Abigail Bailey Jordan Stello Emelia Monahan Falena Walker Brooke Covello	A	Connor Chapman Rosalie Lander Brooke Carlson Nolan Walker Magdalena Maziarz Makenzi Schuerholz	G	Valentina Cubillos Eulogio Gonzalez Kathleen Sullivan Megan Gross Madison Armitage Raleigh Hansen	N	Dairely Camacho Michael Krenning Miki Green Zane Gooding Madison Rigby Kelsey Gipson	T
Samuel Kaplan Mary Miller Julia Jones Callen Farrell Mark Callender Thomas Hauser	B	Blake Zender Cynthia Sahagun Elizabeth Rice Sierra West Rachael Shanahan Olivia Sterne	H	Christina Parslow Sean Rita Hayden Ramsay Kendra Aronson Emmett Bonifazi Mamesa El	0	Angel Ferrer Sarah Wyrick Andrew Hoff Sierra Howard Jordan Anderson Douglas Keough	U
Anjali Grutzius Sarah Hawthorne Andy Lee Cheyanne Bennett Sara Von Krosigk Corey Pargeter	C	Jared McMinn Daniel Duran David Gago Margaret Stepaniants Daniel Brunzell Karmiel Weste	J	Christopher Charles Nora Curran Alex Montgomery Lauryn Paoli Daniel Piker Tristan Thamm	P	Emily Wanner Nathen Grimm Benjamin Haak Bradley Stanchfield Reece Budinich Madison Teefy	V
Spencer Stepniewski Elliette Kee Kimberly Kiefer Hallie Black Mya Bruso-Radosevich Nicolas Morales	D	Megan Ewert Samuel Sawyer Rachel Mason Madison Waters Andrew Boedigheimer Jason Maki	K	Hannah Shaffer Matthew Stinson Cameron Balli Anthony Menghi Spencer Dolecki Matthew Schneider	Q	Tony Bhangal Paul Goins Nikolai Birchler Autumn Nash Lindsey Fujiwara	W
Kevin Yates Karisa Stapp Clare Janetzki 'Jenna Leu Cameron Hall Marisa Gooding	E	Nicholai Whippo Riley McLoughlin Quinn Comstock Jenny Chang Kylisa Hull Nathan Sanders	L	Madison Taylor Jonathan Dacy Taylor Brackinreed Teylor Lowe Sarah H Dean Rees Alferd	R	Jordan Lucia Karalyn Poulsen Bradlee Thielen Grey Hannah Estelle Nelson	X
Wilson Stolle Richele Young Jessica Mantchev Sophie Callens Rebecca Trostad Matthew DiLoreto	F	Samuel Meyer Abbigail Phelps Tristanne Droege Alliandra Hermans Parker Verhoff Emma Michel	M	Eleanor Seaman Emily Shere Damien Bassett Mireya Perez-Garcia Jonah Bettger Thien Bui	S	John Stone Zena Moran Chase Gartner Douglass Shumaker Zachary Kalousis	Z

White boards

Table w/ Podium

| Table + Chair Row |
| :--- | :--- | :--- |

Activity 6: Working with Kepler's Laws

Pre-6.1: Kepler's first law states that the orbits of the planets are
a. always perfectly circular with the Sun in the center.
b. ellipses with the Sun in the center.
c. ellipses with Earth at one of the foci.
d. ellipses with the Sun at one of the foci.

Pre-6.1: Kepler's first law states that the orbits of the planets are
a. always perfectly circular with the Sun in the center.
b. ellipses with the Sun in the center.
c. ellipses with Earth at one of the foci.
d. ellipses with the Sun at one of the foci.

Pre-6.2: Kepler's second law states or implies that while traveling in their orbits, the planets
a. sweep out equal areas in equal times.
b. move fastest when they are the closest to the Sun.
c. move slowest when they are the farthest from the Sun.
d. All of these answers are correct

Pre-6.2: Kepler's second law states or implies that while traveling in their orbits, the planets
a. sweep out equal areas in equal times.
b. move fastest when they are the closest to the Sun.
c. move slowest when they are the farthest from the Sun.
d. All of these answers are correct

Pre-6.3: Kepler's third law tells us that

a. there is a correlation between a planet's distance from the Sun and the period of its orbit.
b. there is the possibility that there is a tenth planet that can be discovered by measuring its orbit.
c. there is a relationship among the distances of the planets from the Sun and the number of moons they have.
d. a planet at a given distance from the Sun would have a different orbital period if its orbit were more eccentric.
a. there is a correlation between a planet's distance from the Sun and the period of its orbit.
b. there is the possibility that there is a tenth planet that can be discovered by measuring its orbit.
c. there is a relationship among the distances of the planets from the Sun and the number of moons they have.
d. a planet at a given distance from the Sun would have a different orbital period if its orbit were more eccentric.

Activity 6: Working with Kepler's Laws

- Do as many steps as you can in a group
- Turn in one set of solutions per group
- Make sure to have your group name and the first and last names of all group members present

Post-6.1: The difference between the semimajor axis and the minor axis is
a. the semimajor axis is always much longer.
b. determined by the eccentricity of the ellipse.
c. the minor axis of an orbit can't usually be measured.
d. None of these answers is correct

Post-6.1: The difference between the semimajor axis and the minor axis is
a. the semimajor axis is always much longer.
b. determined by the eccentricity of the ellipse.
c. the minor axis of an orbit can't usually be measured.
d. None of these answers is correct

Post-6.2: As a planet orbits the Sun in a noncircular orbit, it will slow down as it moves away from the Sun and speed up as it moves toward the Sun. A more physical way of stating this motion is that the planet
a. decelerates during half of its orbit and accelerates during the other half.
b. is not accelerated when it is the closest to the Sun or when it is at its farthest distance.
c. stays in its orbit due to the Sun's gravitational pull.
d. slows down and speeds up during only a small fraction of its time in orbit.

Post-6.2: As a planet orbits the Sun in a noncircular orbit, it will slow down as it moves away from the Sun and speed up as it moves toward the Sun. A more physical way of stating this motion is that the planet

a. decelerates during half of its orbit and accelerates during the other half.

b. is not accelerated when it is the closest to the Sun or when it is at its farthest distance.
c. stays in its orbit due to the Sun's gravitational pull.
d. slows down and speeds up during only a small fraction of its time in orbit.

Post-6.3: Kepler's third law means that all orbits with the same semimajor axis have the same period. This applies to both perfectly circular orbits and highly eccentric ones because
a. Kepler's laws have been repeatedly tested and found to be true for all orbital eccentricities.
b. the speeding up and slowing down of the planet in the eccentric orbit offsets the constant motion of the planet in the circular orbit.
c. the masses of the planets are all approximately the same no matter what the shapes of their orbits are.
d. the Sun is so much more massive than all of the rest of the Solar System bodies combined.

Post-6.3: Kepler's third law means that all orbits with the same semimajor axis have the same period. This applies to both perfectly circular orbits and highly eccentric ones because
a. Kepler's laws have been repeatedly tested and found to be true for all orbital eccentricities.
b. the speeding up and slowing down of the planet in the eccentric orbit offsets the constant motion of the planet in the circular orbit.
c. the masses of the planets are all approximately the same no matter what the shapes of their orbits are.
d. the Sun is so much more massive than all of the rest of the Solar System bodies combined.

Post-6.4: Jupiter's present orbital period is $\mathbf{1 1 . 6}$ years. Jupiter is 318 times more massive than Earth. If Jupiter were moved to Earth's orbit, how long would Jupiter's orbital period be?
a. 1 year
b. 5.8 years
c. 11.6 years
d. 0.12 years

Post-6.4: Jupiter's present orbital period is $\mathbf{1 1 . 6}$ years. Jupiter is 318 times more massive than Earth. If Jupiter were moved to Earth's orbit, how long would Jupiter's orbital period be?
a. 1 year
b. 5.8 years
c. 11.6 years
d. 0.12 years

This concludes Activity 6: Working with Kepler's Laws

