## Planet Densities and Planet Processes <br> Week 5

## Planets are made of matter

- What are planets made of?
- How is matter distributed in the Solar System?
- How is matter distributed within planets?


## Planet density

- Density is the amount of mass $(\mathrm{kg})$ in a given volume ( $\mathrm{m}^{3}$ )

$$
\rho=\frac{m}{v}
$$



## What affects density?

If we hold volume constant:


- How much material we pack into a space
- Solid vs. liquid vs. vapor
- What the matter is made of
- Gas vs. Ice vs. Rock vs. Metal


## Measuring density of planets

We need to know the mass and the volume

Mass $\rightarrow$ from orbital relationships and gravitational attraction
Volume $\rightarrow$ from planet size and geometry


$$
v=\frac{4}{3} \pi r^{3} \quad \rho=\frac{m}{v}
$$



$$
\begin{aligned}
& v=\frac{4}{3} \pi\left(\frac{12,742,000 \mathrm{~km}}{2}\right. \\
& v=\frac{4}{3} \pi(6371000 \mathrm{~m})^{3}
\end{aligned}
$$

$$
\rho=\frac{5.98 * 10^{24} \mathrm{~kg}}{1.083 * 10^{21} \mathrm{~m}^{3}}
$$

Earth
mass $=5.98 \times 10^{24} \mathrm{~kg}$
diameter $=12,742 \mathrm{~km}$

$$
v=1.083 * 10^{21} \mathrm{~m}^{3}
$$

## Let's compare densities



## Earth

mass $=5.98 \times 10^{24} \mathrm{~kg}$ diameter $=12,742 \mathrm{~km}$

$$
\rho=5515 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\rho=\frac{m}{v} \quad v=\frac{4}{3} \pi r^{3}
$$



Moon
mass $=7.36 \times 10^{22} \mathrm{~kg}$ diameter $=3,475 \mathrm{~km}$
$\rho=3346 \mathrm{~kg} / \mathrm{m}^{3}$


## Jupiter

$$
\text { mass }=1.9 \times 10^{27} \mathrm{~kg}
$$

diameter = 143,884 km
$\rho=1326 \mathrm{~kg} / \mathrm{m}^{3}$

## Densities of the planets

Planetary Data*

| Planet | $\begin{aligned} & \text { Mass } \\ & \left(10^{24} \mathrm{~kg}\right) \end{aligned}$ | Diameter <br> (kin) | Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | Length of Day ${ }^{1}$ (hours) | Distance from Sun ( $10^{6} \mathrm{~km}$ ) | Orbital Period ${ }^{2}$ (days) | Orbital Velocity <br> ( $\mathrm{km} / \mathrm{s}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mercury | 0.330 | 4879 | 5427 | 4222.6 | 57.9 | 88.0 | 47.9 |
| Venus | 4.87 | 12,104 | 5243 | 2802.0 | 108.2 | 224.7 | 35.0 |
| Earth | 5.97 | 12,756 | 5515 | 24.0 | 149.6 | 365.2 | 29.8 |
| Mars | 0.642 | 6794 | 3933 | 24.7 | 227.9 | 687.0 | 24.1 |
| Jupiter | 1899 | 142,984 | 1326 | 9.9 | 778.6 | 4331 | 13.1 |
| Saturn | 568 | 120,536 | 687 | 10.7 | 1433.5 | 10,747 | 9.7 |
| Uranus | 86.8 | 51,118 | 1270 | 17.2 | 2872.5 | 30,589 | 6.8 |
| Neptune | 102 | 49,528 | 1638 | 16.1 | 4495.1 | 59,800 | 5.4 |
| Pluto (dwarf) | 0.0125 | 2390 | 1750 | 1533 | 5870.0 | 90,588 | 4.7 |

What does the density of planets tell us?

* Numerical data based on NASA infomation.
${ }^{1}$ Length of Day (hours) - This is the average time in hours that it takes for the Sun to mowe from the noon position in the sky at a point on the equator back to the same position.
${ }^{2}$ Orbital Period (days) - This is the time in Earth days that it takes for the planet to orbit the Sun. ${ }^{3}$ Orbital Velocity (km/s) - This is the average velocity, or speed, of the planet in kilometers per second as it orbits the Sun.
>Inner and outer planets are fundamentally different

The "frost line": Outer planets form where lower temps allowed volatile materials to condense (water, methane, etc.)


## Density of materials

Water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$


Iron metal $=7874 \mathrm{~kg} / \mathrm{m}^{3}$


## What is Earth made of?



## Earth

mass $=5.98 \times 10^{24} \mathrm{~kg}$ diameter $=12,742 \mathrm{~km}$

- We know the outer portions of Earth are made of
- Water ( 1000 kg/m³)
- Ice ( $917 \mathrm{~kg} / \mathrm{m}^{3}$ )
- Rock (~3200 kg/m³)
- Earth must have some heavier stuff somewhere
- We know that much of Earth is made of metal, specifically Iron (Fe)


## Structure of Earth



- Crust and Mantle are made of rock
- Core is made of metal (mostly iron + some nickel)
- Outer core is molten iron
- Inner core is solid iron


## How do we know?

## Evidence for metallic core

## Meteorites provide evidence



## Evidence for metallic core



## Sun's Composition

- The abundance of solar elements shows large amounts of Iron (Fe)
- Solar composition tells us the starting composition of the solar system


## Evidence for metallic core



## Seismic Waves

- We record sound waves moving through the Earth
- The way the move tells us about the internal structure


# Structure of Earth informs us about the structure of other planets 



Planets generally get denser with depth and have a core of dense rocky material or metal

## Compositional zones in the solar nebula

## Temperature in cloud determines where

 various materials condense out:

- Chemical zones away from the early Sun
- Even get subzones (e.g. Mercury different from Earth in the rocky planet zone)


## Compositional zones in the solar nebula



Oxygen Isotopes


Chemical zones in solar system also seen in more sophisticated measurements like oxygen isotopes
> Different zones with different ratios of heavy and light oxygen

## Structure of planets affect how they spin (rotate on their axis)



Planets conserve angular momentum

The more concentrated the mass is to the center, the faster the planet can spin

We can use spin rates of planets to help understand the distribution of material inside

## Evolution of planets and moons

## What are major features of planets and moons?

Size<br>- Large gas giants

- Small planets
- Smaller moons
- Medium- $\rho$, icy

Density \& Composition Location

- Low-p, gaseous
- Outer planets
- High-p, rocky
- Inner planets \& Moon
- Rocky and icy moons in orbit around gas giants


## Effects of size, composition and location

## Outer Planets

- Condense more solids $\rightarrow$ bigger cores
- Large planets can gravitationally attract gases (hydrogen) and moons
- Cannot observe solid parts of planet
- Have large masses and large gravitational effects on other solar system objects


## Effects of size, composition and location

## Solid planets and moons

- Support geologic activity
- volcanics and tectonics)
- from heat escaping from the planet or moon
- Internal planetary heat from:
- Formation (differentiation/core formation and effect of gravity)
- Radioactive decay
- Size dictates how they evolve over time
- Small planets lose heat faster than larger planets
- Geologic activity stops when heat is gone



## Effects of size, composition and location

## Size

- Outer planets condense more solids $\rightarrow$ bigger cores
- Large planets can gravitationally attract gases (hydrogen) and moons


## Density \& Composition

- Rocky planets behave differently because they become solids and support geologic activity
- Size dictates how they evolve over time


## Location

- Rocky and icy moons in orbit around gas giants

