Planet Densities and Planet Processes

Week 5

Planets are made of matter

- What are planets made of?
- How is matter distributed in the Solar System?
- How is matter distributed within planets?

Planet density

• Density is the amount of mass (kg) in a given volume (m³)

 $\rho = \frac{m}{v}$

What affects density?

If we hold volume constant:

- How much material we pack into a space
 - Solid vs. liquid vs. vapor
- What the matter is made of
 - Gas vs. Ice vs. Rock vs. Metal

Measuring density of planets

We need to know the mass and the volume

Mass \rightarrow from orbital relationships and gravitational attraction

Volume \rightarrow from planet size and geometry

Let's calculate Earth's density

$$v = \frac{4}{3}\pi r^3 \qquad \qquad \rho = \frac{m}{v}$$

$$v = \frac{4}{3}\pi (\frac{12,742,000 \text{ km}}{2})^3$$

$$\rho = \frac{5.98 * 10^{24} kg}{1.083 * 10^{21} \,\mathrm{m}^3}$$

Earth mass = 5.98 x 10²⁴ kg diameter = 12,742 km

$$v = \frac{4}{3}\pi (6371000 \text{ m})^3$$

$$ho$$
 = 5515 kg/m³

 $v = 1.083 * 10^{21} \,\mathrm{m}^3$

Let's compare densities

ho = 5515 kg/m³

$$\rho = \frac{m}{v} \qquad v = \frac{4}{3}\pi r^3$$

<u>Moon</u>

mass = 7.36 x 10²² kg diameter = 3,475 km

ho = 3346 kg/m³

Jupiter

mass = 1.9 x 10²⁷ kg diameter = 143,884 km

ho = 1326 kg/m³

Densities of the planets

Planetary Data*

What does the density
of planets tell us?

Planet	Mass (10 ²⁴ kg)	Diameter (km)	Density (kg/m³)	Length of Day ¹ (hours)	Distance from Sun (10 ⁶ km)	Orbital Period ² (days)	Orbital Velocity ³ (km/s)	
Mercury	0.330	4879	5427	4222.6	57.9	88.0	47.9	Inner planets Density ≥ 4000 kg/m ³
Venus	4.87	12,104	5243	2802.0	108.2	224.7	35.0	
Earth	5.97	12,756	5515	24.0	149.6	365.2	29.8	
Mars	0.642	6794	3933	24.7	227.9	687.0	24.1	
Jupiter	1899	142,984	1326	9.9	778.6	4331	13.1	
Saturn	568	120,536	687	10.7	1433.5	10,747	9.7	Outer planets Density ≤ 1600 kg/m ³
Uranus	86.8	51,118	1270	17.2	2872.5	30,589	6.8	
Neptune	102	49,528	1638	16.1	4495.1	59,800	5.4	
Pluto (dwarf)	0.0125	2390	1750	153.3	5870.0	90,588	4.7	

* Numerical data based on NASA information.

¹Length of Day (hours) – This is the average time in hours that it takes for the Sun to move from the noon position in the sky at a point on the equator back to the same position.

²Orbital Period (days) – This is the time in Earth days that it takes for the planet to orbit the Sun.

³Orbital Velocity (km/s) – This is the average velocity, or speed, of the planet in kilometers per second as it orbits the Sun.

Inner and outer planets are fundamentally different

The "frost line": Outer planets form where lower temps allowed volatile materials to condense (water, methane, etc.)

Density of materials

Iron metal = 7874 kg/m³

What is Earth made of?

- We know the outer portions of Earth are made of
 - Water (1000 kg/m³)
 - Ice (917 kg/m³)
 - Rock (~3200 kg/m³)

<u>Earth</u>

mass = $5.98 \times 10^{24} \text{ kg}$

diameter = 12,742 km

ho = 5515 kg/m³

- Earth must have some heavier stuff somewhere
- We know that much of Earth is made of metal, specifically Iron (Fe)

Structure of Earth

- Crust and Mantle are made of rock
- Core is made of metal (mostly iron + some nickel)
 - Outer core is molten iron
 - Inner core is solid iron

How do we know?

Evidence for metallic core Meteorites provide evidence

Iron meteorites Cores of planetesimals

(Below a stony-iron meteorite called a "pallasite"... iron mixed with a mineral called "olivine"...from a core-mantle boundary of a planetesimal

Chondrites

Contain earliest accreted materials called "chondrules" that show solar system composition

Evidence for metallic core

Sun's Composition

- The abundance of solar elements shows large amounts of Iron (Fe)
- Solar composition tells us the starting composition of the solar system

Evidence for metallic core

Seismic Waves

- We record sound waves moving through the Earth
- The way the move tells us about the internal structure

Structure of Earth informs us about the structure of other planets

Compositional zones in the solar nebula

Temperature in cloud determines where various materials condense out:

- Chemical zones away from the early Sun
- Even get subzones (e.g. Mercury different from Earth in the rocky planet zone)

Compositional zones in the solar nebula

Chemical zones in solar system also seen in more sophisticated measurements like oxygen isotopes

Different zones with different ratios of heavy and light oxygen

Structure of planets affect how they spin (rotate on their axis)

Crust

Upper mantle

Lower mantle

D" layer Outer core Inner core

Mantle transition zone

 ρ_{earth} = 5500 kg/m³

Mars: Core of Fe and Ni, but probably has more Sulfur due to how it rotates and its overall density CCC Bacena Bacen Solid mantle of silicates and metals

Rockv

surface

 ρ_{mars} = 3900 kg/m³

Planets conserve angular momentum

The more concentrated the mass is to the center, the faster the planet can spin

We can use spin rates of planets to help understand the distribution of material inside

Evolution of planets and moons

What are major features of planets and moons?

Size

- **Density & Composition** Location
- Large gas giants
 Low-ρ, gaseous

Outer planets

- Small planets
 High
 - High-p, rocky

Inner planets & Moon

• Smaller moons • Medium-p, icy

 Rocky and icy moons in orbit around gas giants

Effects of size, composition and location

Outer Planets

- Condense more solids \rightarrow bigger cores
- Large planets can gravitationally attract gases (hydrogen) and moons
- Cannot observe solid parts of planet
- Have large masses and large gravitational effects on other solar system objects

Effects of size, composition and location

Solid planets and moons

- Support geologic activity
 - volcanics and tectonics)
 - from heat escaping from the planet or moon

- Internal planetary heat from:
 - Formation (differentiation/core formation and effect of gravity)
 - Radioactive decay

- Size dictates how they evolve over time
 - Small planets lose heat faster than larger planets
 - Geologic activity stops when heat is gone

Effects of size, composition and location

Size

 Outer planets condense more solids → bigger cores

 Large planets can gravitationally attract gases (hydrogen) and moons

Density & Composition

- Rocky planets behave differently because they become solids and support geologic activity
- Size dictates how they evolve over time

Location

 Rocky and icy moons in orbit around gas giants

