Week 8

Measuring stars 1

Monday, Nov. 7

Today's learning objectives (Monday Nov. 7)

- Describe how star magnitude, flux, luminosity are related and why each is used
- Explain what factors (variables) influence magnitude, flux and luminosity
- Describe the features of the H-R diagram
- Explain how the H-R diagram is used to categorize stars

Tomorrow:

- Activity 17: Spectral Classification of Stars

Place stars in order of temperature, coolest to hottest

A. X, Y, Z
B. X, Z, Y
C. Z, Y, X
D. Y, Z, X

Place stars in order of temperature, coolest to hottest

A. X, Y, Z
B. X, Z, Y
C. Z, Y, X
D. Y, Z, X

What is a star's magnitude?

A. Its size
B. Its brightness
C. Its distance
D. Its magnetic field

What is a star's magnitude?

A. Its size
B. Its brightness
C. Its distance
D. Its magnetic field

Magnitude provides a way to compare the brightness of different stars

Which star is brightest?

A. X
B. Y
C. Z
D. Depends, dude.

Which star is brightest?

A. X
B. Y
C. Z
D. Depends, dude.

Have to consider:

- How well we can distinguish (measure) brightness?
- How far away is each star?

X, Y, Z all appear to have the same brightness at visible wavelengths
= same apparent magnitude
If we consider effect of distance from Earth, we can adjust for direct comparison:
= Absolute magnitude

$$
M_{\mathrm{v}}=m_{\mathrm{v}}-5 \log d+5
$$

Need a way to measure distance

- We'll find there are different ways to measure astronomical distance
- On Friday, we calculated distance according to parallax

Measuring by parallax

- Close your left eye
- Hold up your thumb to cover the blue star
- Close your right eye and open your left
- Adjust your thumb so the orange star is covered

- Now do the same, and adjust your thumb so the yellow star is covered
- Did you move your thumb closer or further from you?

Measure parallax of stars by observing them as Earth moves around the Sun

The smaller the parallax angle, $\mathrm{p}^{\prime \prime}$:
A. The closer the star
B. The further the star
C. The bigger the star
D. The smaller the star

Parallax of nearby star

Measure parallax of stars by observing them as Earth moves around the Sun

The smaller the parallax angle, $\mathrm{p}^{\prime \prime}$:
A. The closer the star
B. The further the star
C. The bigger the star
Six months
from now
D. The smaller the star

Parsec

Distance expressed in terms of the angle of parallax

- Parallax arcsecond = parsec (abbreviated ' pc ')

Distance $($ in $p c)=\frac{1}{\text { parallax }(\operatorname{arcseconds})}$
$1 \mathrm{pc}=3.26$ light years

Arcsecond is an angle $=1 / 3600^{\text {th }}$ of 1°

Equal to measuring $\sim 1 / 20^{\text {th }}$ of 1 mm from across this classroom

Magnitudes are kind of nice, but we can use a better measurement to compare stars

The properties of blackbody radiation let us calculate how bright an object is.

- Flux: rate at which energy passes through a surface. Units = energy per area per time.

The properties of blackbody radiation let us calculate how bright an object is.

- Flux: rate at which energy passes through a surface.
Units = energy per area per time (Watts/m²)
- Monochromatic flux = flux at a single wavelength
- Bolometric flux = flux over all wavelengths
(Mathematically, bolometric flux is the area under a blackbody curve).
- Bolometric flux emitted at the surface of a blackbody is:
- $\mathrm{F}_{\text {emitted }}=\sigma \mathrm{T}^{4}$, where $\sigma=5.67 \times 10^{-8} \frac{\text { Watts }}{\mathrm{m}^{2} \mathrm{~K}^{4}}$

Can you calculate the bolometric flux emerging from the Sun's surface?

Quick Quiz: If Star A is twice as hot as Star B, how do their surface fluxes compare? (how much more light is coming off each square foot of Star A's surface?)
A. $2 x$ as much

B. $8 x$ as much

C. $16 x$ as much
D. $32 x$ as much

E. Cannot be determined

Quick Quiz: If Star A is twice as hot as Star B, how do their surface fluxes compare? (how much more light is coming off each square foot of Star A's surface?)
A. $2 x$ as much
B. $8 x$ as much
C. $16 x$ as much
D. $32 x$ as much

E. Cannot be determined

Quick Quiz: If Star A is $10 x$ as hot as Star B, how do their surface fluxes compare? (how much more light is coming off each square foot of Star A's surface?)
A. $10 x$ as much
B. $40 x$ as much
C. 4000 x as much
D. $10000 x$ as much

E. Cannot be determined

Quick Quiz: If Star A is $10 x$ as hot as Star B, how do their surface fluxes compare? (how much more light is coming off each square foot of Star A's surface?)
A. $10 x$ as much
B. $40 x$ as much
C. 4000x as much
D. 10000x as much

E. Cannot be determined

