Week 9 Evolution of high-mass

November 16

Low-mass star lifecycle overview

Each step thas observable difference in L & T

What causes these changes?

Changes in balance of:

- inward pull of gravity and
- outward pressure from core temperature

Why does balance change?

Changes in:

- Core composition/size
- Type of nuclear fuel (¹H or ⁴He)

What about high-mass stars?

- Mass > $8M_{\odot}$
- High T
- High L
- Large radius (~10 R_{\odot} while on main sequence)

What about high-mass stars?

Lifetimes of stars

Big stars have much shorter lives

Why?

http://w.astro.berkeley.edu/~dperle y/univage/clusterhranim.gif

High-mass stars use higher mass elements as nuclear fuel

Fusion in high-mass stars

 Go through burning elements in series of steps to make new cores over time

For a 25 sola	ar mass star:
---------------	---------------

Stage	Duration
Н→Не	7x10 ⁶ years
He → C	7x10 ⁵ years
C→O	600 years
O → Si	6 months
Si → Fe	1 day
Core Collapse	1/4 second

Rapid collapse of iron (Fe) core leads to supernova explosion

- Expands at 10000 km/s
- Releases all the elements into space
- Explosion has such high energy it can fuse heavy elements like Fe into even heavier elements, like Au, Pb all the way to U

Thank you nuclear fusion

All the elements we know of and are made of were manufactured in stars and released to space in supernova events

Comparing lives of low and high mass stars

